If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3j^2+35j-12=0
a = 3; b = 35; c = -12;
Δ = b2-4ac
Δ = 352-4·3·(-12)
Δ = 1369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1369}=37$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(35)-37}{2*3}=\frac{-72}{6} =-12 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(35)+37}{2*3}=\frac{2}{6} =1/3 $
| 40x^2-230x+3.33=0 | | 8+x=-104 | | 40x^2-141.5x+3.33=0 | | 7x-22=26+11x | | 40x^2-141.5+3.33=0 | | 5k^2-24k-5=0 | | 2x-52=74+9x | | 5*6^7x=2 | | 50w^2-15w+1=0 | | 3x-60=-6x+66 | | 1.9y=5.7 | | 32+4c=18 | | 3u^2+34u+11=0 | | 0.90(x+60)+0.50x=103 | | -7x-52=58-12x | | 8*(5x–3)–11*(3x+7)=102 | | 3x^2-6x=504 | | (3x+4)(x-4)=0 | | -86-6x=-11x+64 | | 470÷x=47 | | -86-6x=-11x+63 | | 5/2x+1/2x=3x+5/2+5/2x | | -65+3x=-8x+67 | | 3.5g+6=27 | | (x-2)/5=10 | | 2s^2-11s+14=0 | | -15=2g-7 | | 3/2(x+4)+1=1/4(x-3) | | -7x-73=71+x | | 4d^2+13d+10=0 | | -2.45=(t-(5)(9.8))/(5) | | 4q^2+44q+121=0 |